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Boundary Element Analysis of the Time-Dependent Motion of a
Semi-infinite Bubble in a Channel
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We present a boundary element method to investigate the time-
dependent translation of a two-dimensional bubble in a channel of
width 2a containing a fluid of viscosity p and surface tension y. In
our analysis, the flow rate, Q*, is specified, and the finger progresses
forward at a nonconstant velocity until it reaches a steady-state
velacity U*, The primary dimensionless parameters in the unsteady
formulation is Cag = pQ*/2ay, representing the ratio of viscous
forces to surface-tension forces. Steady-state results are given in
terms of the conventiona! form of the capillary numbaer, Cay = ulU*f
v. The steady-state shape of the finger, the pressure drop across
the tip of the finger, and its radius of curvature are presented for
a range of Cay much larger than has previously been published
(0.05 = Cay = 10°). Good agreement is shown to exist with the finite-
difference results of Reinelt and Saffman in the range of their studies
{0.05 = Cay = 3), and with the experimental data of Tabeling ef al.
whose studies extend to Cay, = 0.2, Beyond Cay = 20, we predict
that the steady-state meniscus interface shape is insensitive to Ca,
and that the pressure drop is directly proportional {0 a viscous
pressure scale. A regression analysis of the finger width {3} versus
Cay yields 8~ 1 — 0.417(1 -~ Exp(— 1.69 Ca}*™)}, which gives the
correct behavior for both smalt and large Cay,. This regression result
may be considered an extension of the low-capillary asymptotic
predictions of Bretherton, who found a Cal’ dependence for Ca
very smalt (Cay < 0.02). The resuit of this regression analysis is
consistent with Taylor's measurements of residual film thickness
in circular tubes, which shows a Cal” dependence for vatues of
Cay < 0.09.

€ 1994 Academic Press, Ihe.

i. INTRODUCTION

Convection of a tinger ol air heougla viscous fTuid contained
between two narrowly spaced plates has been studied by numer-
ous investigators since Salfman and Taylor published the results
of their fundamental investigation in 1958 |23]. This problem,

* Current address: Department of Mathematics, University of Alabama, Tus-
caloosa, Alabama 35487,

two-phase flow in a Hele—-Shaw cell, is of basic interest {or
several reasons. First, the averaged two-dimensional velocity
rool the viscous fluid between the plates (averaged in the
transverse directiony follows an equation that s analogous 10
Darey's law Tor How through porons media. This system his
been used 1o study phenomena related o the recovery of oil
from oil liclds and the transport of substances in porous media
{1]. In experiments using Hele—Shaw cells, it was observed
that as the meniscus interface progressed forward, the planar
interface became unstable and formed a fingered interface. As
the fingers progressed, one finger was found 1o dominate and
develop into a stable finger. Saffman and Taylor [23], and Pitts
[+7] found experimentally that the stable finger has a lateral
width equal o one-half of the cell width (A = %) in the fimit
of large capillary number, Ca, = pU*/y, where w is the fluid
viscosity, U* is the steady-state finger velocity, and -y is the
interfacial surface tension. The lateral finger width was found
to increase with decreasing Cuy. The study of this fingering
behavior has been of interest 1o investigators of interfacial
stability, dendritic erystal growth and the formation of fractal
structures. Recently, flow in a flexible-walled Hele—Shaw cell
has been suggested as a model that may simulate the reopening
of closed pulmonary airways |8].

In their analyses of two-phase displacemen in a Hele-Shaw
cell, Saffman and Taylor [23] found c¢losed-form solutions to
the Iateral interface shape by neglecting the influence of surface
tension, However, they were unable to determine the value of
A corresponding to this large capillary number limit. Neverthe-
less, given a value of A close to §, the analytical solutions
provided lateral interface profiles that are in good agreement
with experimental observations. When surface tension effects
due to lateral curvature were included, McLean and Saffman
[15] were able to predict values of A whose dependency on the
capiliary number agreed qualitatively with experiments, and
they predicted a value of A = % in the limit of large Cay-
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However, these solutions do not agree quantitatively with mea-
surements of A for small and intermediate values of Cay,. Subse-
quently, Romero [22] and Vanden-Broeck |28] found different
solutions to the model studied by McLean and Saffman {15].
However, Tanveer [26] has shown that only the solutions pro-
vided by McLean and Saffman [ 15] are stable. DeGregoria and
Schwartz {5} used time-dependent computational simulations
to trace the behavior of small disturbances in the finger tip.
The resulis of these calculations also indicate that Mclean and
Saffman’s solutions are stable. When noise was added to the
system, the otherwise stable finger bifurcated continuously to
produce a simple tree-structure {6). For large values of the
capillary number, it was also discovered that instability occurs
without the addition of noise.

Although the addition of surface tension effects due to lateral
curvature allows for the prediction of the finger width A, this
prediction is only qualitatively accurate. In particular, experi-
mental measurements of A for a given value of the stability
parameter, 1/B = 12 Ca, (w/a)’, are larger than those predicted
by the two-dimensional analyses described above. Here w/a is
the ratio of the Hele—Shaw cell width to transverse thickness.
It has been suggested that the discrepancy between the measured
and predicted values of A may be due to three-dimensional
effects created by variation of curvature in the transverse direc-
tion. The models described above assumed that the driving
fluid completely expelled the driven fluid from between the
plates and, thus, that the interface curvature in the transverse
direction was constant [ 15]. However, measurements by Tabe-
ling. Zocchi, and Libchaber [25] indicate that the thickness of
the restdual film, or alternatively the transverse finger shape,
depends on the capillary number. Additionally, by conducting
experiments in cells of differing aspect ratios (w/a), they found
that the single stability parameter /B was insufficient to
uniquely describe the lateral finger width. This, too, was attrib-
uted to three-dimensional effects,

Several investigators have calculated the thickness of the
film left behind after a finger of air pushes through the viscous
fluid. Asymptotic selutions for transverse finger shape and pres-
sure drop in two-phase displacement in a Hele-Shaw cell have
been solved by Park and Homsy [16] and are accurate for flows
in which the capillary number is small (Ca, <X 0.02) and in
which imertia is negligibie. This problem has also been investi-
gated computationally by Reinelt and Saffman [21], who used
an adaptive-grid composite-mesh finite difference scheme and
gave results for values of Cay in the range 0.0l = Cay =
3.0. However, in this range of Cay, the finger width increases
monoetonically with Cay,, a behavior that is unlikely to continue
for large values of Cay,.

To date, computational investigations have focussed on the
steady-state behavior of a bubble progressing through a channel.
The aim of the present investigation is to compute the time-
dependent transverse finger shape and pressure drop in two-
phase displacement in a channel. [n addition, we aim to extend
the range of capillary numbers investigated to values beyond
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FIG, 1. Two-phase displacement in a Hele—Shaw cell. Flow rate. 0%, is
used to displace viscous fluid with gas-phase finger.

those of previous studies (Ca, < 10%). We use an efficient
mamerical method to solve the Stokes equations for two-dimen-
sional slow viscous flows whereby the velocity and stress fields
are expressed in terms of one-dimensional integrals, thereby
reducing storage and computational work compared with that
required in finite-difference or finite-element methods. The nu-
merical implementation of this scheme is called the boundary
element method, which has been used to solve linear elasticity
problems [3], the Stokes equations [9, 18] and surface flows
in which nonlinearities enter through the stress-jump condition
at the interface between two fluids. Examples include the defor-
mation and burst of bubbles and drops [14, 19] and rigid parti-
cles approaches deformable interfaces (2, 11]. A major diffi-
culty with this method lies in the fact that fundamental solutions
of the Stokes equations are singular, and consequently analyti-
cal methods [9, 12], special Gaussian quadrature rules [3], or
expansions about the singularities {10, 13] are needed to inte-
grate these boundary integrals. We will follow the approach
taken by Youngren and Acrivos [29] and Rallison and Acrivos
[19] and express the integrals in terms of the velocity and stress
fields as opposed to the streamfunction—vorticity approach
taken by L and Chang {12]. The other major difference from
[12] is that our method can be applied to problems with time-
dependent boundary conditions.

2. PROBLEM FORMULATION

2.1. Governing Equations

In this model problem we consider the time-dependent mo-
tion of an infinitely long air finger being driven forward by a
constant flow rate *. The bubble moves through a channel
of width 24 filled with an incompressibie Newtonian fluid of
viscosity p (Fig. 1). The steady-state finger tip velocity 1s given
by U* = Q%/(2af3), where 2af3 is the upstream finger width,
We will neglect the dynamics of the inviscid air-phase and
assume that the air pressure is constant. The governing equa-
tions are scaled as

o* Y _ 2
u*=—2?u, p*=~c;p, x* = ax, t*-~Q—;t,

and h*=qh,

(2.1
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where * represents a dimensional quantity, u = (u, v) is the
fluid velocity, p is the pressure, vy is the surface tension of the
air-liquid interface, and v = h (x, ) is the position of the air—
liquid interface. With this scaling, the non-dimensional Navier—
Stokes equations are

V= CayVu — Cap-Refu, + (u-V)u), (2.2)
where the subscript ¢ denotes differentiation with respect o
fime, Cay = w@*/(2ay) is the capillary number based on the
imposed constant flow rate representing the relative magnitude
of the viscous to imterfacial forces, and Re = pQ*/2u) is the
Reynolds number. For slow viscous flow, Ca, -Re <€ 1, and
the fluid equations for the liquid phase may be approximated
by the non-dimenstonal Stokes equations, given by

Vp = Ca, Viu. (2.3)

In addition, the continuity equation must also be satisfied:

V-u=0. (2.4)
For a given bubble shape, we fix our reference frame to a
frame that moves forward with the associated meniscus velocity
{which depends upon ), and thus the no-slip conditions af the
channel walls are

€
n=——

B

aty =1, (2.5)

where e, = (I, () is the unit vector in the horizontal direction.
Far ahead of the finger we impose Poiseunille flow,

ap |
N ot ol P I 45 N \ 6
u (2&:@ ax =D ,8) b = ® (2.6)

and behind the finger we specify that

X
0H——— asx— —®©,

(2.7

Then by mass conservation we require that

a
L, -3 Cay asx— o,

o (2.8)

At the air-liquid interface, we apply the stress jump condition

{o-m] = n¥V-n, (2.9}
where | ] denotes the jump in normal stress across the air—
liquid interface, o = —pl + Cay (V, + Vu') is the stress
tensor, n is the outward unit normal, and V-n is the surface
curvature. In addition, the kinematic boundary condition speci-
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FI1G. 2. Boundary discretization used for the computational simulation.
Boundary conditions for segments A, B, C, D, and E are described in Table 1.

fies that the interface moves normal to itself at the local nor-
mal velocity,
&Y

—-n=u-n aty=h(x, 0,
H - x0

(2.10)
where ¥ = Y (v, y, #) is the interfacial position vector. This
condition is used to time-step the finger domain and, thus,
introduces the time-dependent motion into our solution. Steady-
state solutions are determined when the normal component of
the interfacial velocity approach zero. The velocity boundary
conditions, (2.5)—(2.7) instantancously adjust to changes in
finger width 8. When *‘continuous’’ boundary conditions are
applied (see Table 1), the interface point DE is forced to move
with the neighboring point.

2.2, The Boundary Element Method

A solution for the velocity field resulting from Stokes flow
(2.3) can be obtained in terms of single and double layer poten-
tials by taking Fourier transforms of (2.3} and (2.4) and applying
Green'’s theorem [10],

i
u(x) = j  Talt Y S, = = j Ui, pymds,, @.11)

where

Undx, ¥) = *4—1# {&-k log|x —y[— W}

(2.12)
1 (xi— )‘.‘)(x; - y;)(xk - yk)

|x —yi*

iy,

S represents the boundary surface (Fig. 2) and 7, = o;n;, where
i,j are indices that are either | (x-direction) or 2 ( y-direction).
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[n the limit as X tends to a point on the boundary surface, due
to the singular nature to the integrands, the solution (2.11) be-
comes

1
Cun() = [ Talt, udS, == | U yimds,, (2.13)

where x € §. The tensor Cy; is due to the jump in stress at the
surface. It has a value of & 8, if the boundary is smooth but
has a more complicaied structure if the domain has corners {3].
The known values of ; in (2.13) are given by Eq. (2.9).

The numerical procedure used to solve (2.13) involves dis-
cretizing the boundary (Fig. 2) into ¥ 3-point elements, so that
Eq. (2.13) is approximated by

Cuui(x) — E,L L Tylx, y)u; dS, =

1
“Ca E;N:l f U y)m ds,.. (2.14)

The variables u and T are written in terms of quadratic polyno-
mials, ¢, which are functions of a local coordinate £ (—1 =

&=,
ny 3 I;
(0)-52 ()

Te _ 3 ij
(7\-) =2 O ('r)

(2.15)

where (u;, v;) and (TXJ, 'T_\.J) are the velocities and stresses at
the node point j on the surface. ¢;(£) are given by

b=ZHE- D b=(-HATH b
: (2.16)
=—'E§(] + &

Similarly, x and y are written in terms of ¢; at each node point:

()=3% e (3)

Equation (2.14) can then be written as a system of linear equa-
tions,

Q217

Hw = Gt, (2.18)

where H and G are respectively 4N X 4N and 4N X 6N matrices,

and wy = 1y, Wy = Uy by = Tep by = 7, forj=1,..2N.
. . . 71

Matrix G is larger than H in order to allow the stress vector

to have two distinct values at corner points, thus accounting
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for the two possible orientations ot the normal vector at corner
points. As will be shown in the next section. this is particularly
useful at corner points, where the normal to the surface abruptly
changes directton. The elements of H and G are obtained using
a 10-point regular Gaussian quadrature if x is not coincident
with one of the node points of §;. Otherwise a logarithmic
quadrature is incorporated to compute those portions of the
integrals in (2.14) that contain the logarithmic singularity. The
diagonal coefficients of H are computed indirectly by imposing
a unitorm flow in both the x and v directions. This is a much
simpler, but accurate, technique than using highly specialized
methods to compute the principal value of H [3]. We then
apply the boundary conditions (2.5)-(2.9) to (2.14), as de-
scribed below in Implementation Considerations, and rearrange
the system so that

Az =1, (2.19)
where A is 2 4N X 4N matrix, Z is a 2N vector containing the
unknown velocities and siresses and f contains the known stress
or velocity information.

System (2.19) is solved using Gaussian elimination with
partial pivoting. z can be uniquely determined if the shape of
the boundary is known so that the curvature in (2.9) can be
computed. Our scheme is similar to that used by Martinez [13]
in that we assume an initial shape, which does not satisfy the
steady-state condition ©-n = { on the finger, and sotve for z.
The new shape is computed by applying the kinematic boundary
condition and determining the new z by solving (2.19) again.
This procedure is repeated sequentially until [u-nl| < £, where
£ <€ |. We use the initial value solver Isoda from ODEPACK
which uses either Adams—Bashforth method for non-stiff sys-
tems or Gear’s method for stiff systems. In all our computations
we have selected our steady-state criterion to be € = 0.001,
which we found sufficient to ensure convergence. An additional
check on convergence was performed by compuating the pres-
sure difference across the finger tip using two independent
methods. This is discussed in the next section.

We calculate profiles for different values of the capillary
number sequentially. When this is done, the solution for the
previous capillary number is used as an initial condition for
the next simulation. In so doing, the maximum normal velocity
may be quite small initially; then it increases in magnitude and
finally decreases toward zero as the meniscus approaches its
steady-state configuration. In order to ensure that the meniscus
approaches steady-state, we set a criterion such that the simuia-
tion must progress to r = 5 before calculating the value of u-n
for use in satisfying the steady-state criterion described above.

2.3. Implementation Considerations

As described by (2.9) the normal-stress jump across an air—
liquid interface is proportional to the imterfacial curvature,
« = V-n, and thus the solution to this mode! problem requires
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TABLE |

Descniption of the “*Continuous’ and “*‘Mixed’’ Boundary Conditions

Boundary segment

A B BC <D D DE E EA
Boundary EEE- IR x=1 x =3 0=x=3, x=0, -5=Z =0, = -5 x= =5 x = -5
conditions y=-1 —l=y=0 y = y=90 y=0 v = hlen) y=-1+48 —1=v=-1+8 y= -1
w=—13 = -1B =151 =)= i w=15- l/B. =0 Tie =0, T = KM T = K. n==-1a = -a
T = KN w=—1/3
Continuous v=20 v =10 v=10 p=10 v =10 ™= Kkn Tip = KM, v=0 v=1>0
Te=1 Top = KM v=10
v=10
w= —0/g Tia = —3.Ca,, w= 131 = ¥y — U u=15- 18 =10 T =10, T = KMy Ty = KH. T =0 e =0,
v =1 v =0 Tie =90 T4 =0
Mixed v="n w=—1/8. = —3uy-y Ty =0, ¢ =0 Tip = KALL = KA Tip = K, =0 Ty, =
Ty = 3-Cay e =0, Tip = Ky Ty =10 Ta =0
v=>0

an accurate determination of the interfacial curvature. The cur-
vature was computed at each interfacial node | by

K = (Xl ysk — ()il ¥ss)i, (2.20)

where the subscript s denotes differentiation with respect to
the arc-length s. The arc-length to each node (s;) was computed
by integrating along the interface using a quadratic spline ap-
proximation to the interface shape. Cubic splines were then
computed for x; vs 5, and y; vs s;, with specified end derivative
conditions to ensure symmetry. These were then differentiated
o compute ;.

We used a non-uniform distribution of points along the inter-
face since the accurate calculation of the curvature is crucial
to the precise computation of the normal-stress balance and
since the curvature changes rapidly near the meniscus nose.
For this study, we selected a distribution such that As, = i#*
Sow!MY?, where i = | denotes the nose, i = M specifies the
last point on the finger, s, is the total meniscus arc-length,
and As; 1s the are-length from node -1 to node t.

As time-stepping progresses, the meniscus moves in a direc-
tion normal to its surface, and thus the nose can progress away
from x = 0. In order to eliminate the possibility of the nose
tip (the intersection of segments C and D in Fig. 2) from
overtaking the neighboring point in segment C, we move the
points along segments C and B with the same horizontal velocity
as the nose point. This serves 10 hold the boundary element
spacing constant near the meniscus nose. Periodically (typically
every Ar = 0.25), we redistribute the domain by sliding the
meniscus such that the nose once again resides at the origin
(moving segments C and B in conjunction), and then redistribut-
ing the interface points such that they satisfy the spacing distri-
bution described above.

Although the formulation presented in Section 2.1 provides
a well-posed mathematical statement of the problem, ambiguity
exists in its trapslation to the boundary element formulation.
Table 1 defines two plausible sets of boundary conditions for

this problem. The first set of conditions is called *‘continuous,”’
since at corners AB and EA the conditions specify velocities
(4, v), and the unknowns are thus the stresses (7,, 7») at the
corner. The second set of boundary conditions takes advantage
of the fact that our computational method permits discontinuous
stress vectors at the juncture of any two boundary elements;
we use this capability at domain comerpoints. As mentioned
above, this stress-vector discontinuity is a result of the disconti-
nuity in the normal vector at the corners and has no other
physical significance. This set of conditions we call *‘mixed,””
since the corner point conditions are in all cases a mixture of
velocity and stress conditions, with the unknowns being 2 (of
the 4) stresses on the corner node as described in Table 1. For
example, at the corner node AB (the intersection of boundary
segment A with boundary segment B), the “‘mixed’” condition
case specifies the x-component of stress on segment A (7,,),
the y-component of stress on segment B (7.5), and the velocity
components (u, ). The unknowns are thus 1, (the x-compo-
nent of stress on the B-side of the corner), and 1., {the »-
component of stress on the A-side of the corner).

Figure 3 shows the results of the calculation of the normal
stress (7;) along the bottom wall using the ‘‘continuous’ and
“mixed’’ boundary conditions. This figure shows that both
formulations provide similar stresses in the middle of the do-
main, but the “*continucus’™ boundary conditions provide er-
ratic results near the endpoints. This behavior is due to stress
discontinuities created by normal vector discontinuities at
boundary corners. For example, along segiment A the normal

vector is my, = (0, ~ 1) s0 7,4 = —Cag{du/dy + dv/dx). As
x— o 7., — —3-Ca,. However, along segment B the normal
vectoris mg = (1, O) so My = —p + 2 Cap (du/dx) = — p.

This discontinuity is not permitted by continuous boundary
conditions, which thus leads to the errors demonstrated by Fig,
3. The computations described in the remainder of this paper
were therefore computed using the “‘mixed” conditions pre-
sented in Table L



BOUNDARY ELEMENT ANALYSIS OF TIME-DEPENDENT MOTION

T 1 T
O "Mixed" Boundary Conditicns

® "Continuous" Boundary Conditions

Y-Component of Stress (t,) On Botlom Wall

FI1G. 3. Computed values of the normal-stress (7,) along the bottom wal
for Cap = 0.35: & = mixed boundary conditions; @ continuous condittons,

[n addition, the horizontal cornponent of velocity at the finger
tip is an unknown, since at the intersection of segments C and
D, we can set 7, = 0 and v = 0 along the axis of symmetry
and 1,p = « n,; along the curved segment. The other unknown
here is 7,¢. This enables vs to compute the pressure difference
actoss the finger tip using two methods. Since p = 2Cq,
du/dx — 7p, p can be determined by approximating du/dx
using finite differences along the centerline, Also, 7.c =
—p + 2 Cupdvfdy, sothatp = —(7,p + T2c)/2, which elim-
inates the need for any further approximations. By comparing
these estimates of p, we can infer the accuracy of our solution
near this bighly-important region. We find that when the esti-
mates of p differ by less than 1%, our point density is sufficient
near the tip,

3. RESULTS

3.1. Convergence

The global error of the temporal behavior was investigated
by time-stepping the simulation with different tolerance magni-
tudes for the normn of the local error. The computational method
assessed the local error norm as the max (E/W,), where E; is the
absolute value of the error estimate evaluated by the difference
between the predictor and corrector steps solutions, W; is the
max(|¥;], 1), and Y, is the magnitude of the solution at the ith
point. We simulated the transition behavior from a Ca, = 0.35
steady-state meniscus to a Ca; = 1.25 steady-state profile using
tolerance criteria of 1073, 107°, and 107", From these results,
we found that the global error was small for local tolerance
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values greater than or equal to 107 and we use 107 for all
futare calculations.

We explored the influence of the domain size by varying the
endpoints over the range —7 < x =< 7to —2 = x = (.25 while
holding the domain point density fixed for Ca, = 0.3 and Cu,
= 1.0. We found that the results (tip curvature, pressure drop,
and B) were insensitive to the domain size for domains larger
than —3 = x = |. For the remainder of the calculations, the
domain size was set to —5 = x = 3,

We investigated the sensitivity of the time-dependent behav-
ior to the node-point redistribution interval (A1, i) by calcu-
lating the transition from a Ca, = 0.35 profile to a Ca, = 1.25
profile using redistribution intervals of Af e = 0.1, 0.25,
and 1.0. We deduced from these results that the error induced
by node-point redistribution is negligible if At guipe = 0.25.

Convergence as a function of the spatial distribution of node
points on the air-liquid interface was examined by computing
steady-state profiles for Cay = 0.35 and Ca, = 1.25 profiles
with various numbers of nodes defining the air—liquid interface
(segment D in Fig. 2). In these computations the number of
interfacial points varied from 14 to 50, and all other node points
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FIG. 4. Dependence of compuiational prediction of finger widih (3, finger
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were held constant in the same configuration as shown in Fig.
2. Steady-state convergence was assumed to occur when max
(W Minerfece = 0L.001 (discussed below). The resuits of this study
are shown in Fig. 4, which presents plots of the finger width
((3), tip curvature, and the pressure jump as a function of the
number of node points. While the tip curvature and pressure
jump are more sensitive than 8 to the number of interfacial
" points, all cases converge to values independent of the number
of interface points if at least 25 interface points are used. This
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figure suggests, however, that high capillary number simula-
tions may require an increased number of interface points if
convergerice is to be accomplished. For this reason, our simula-
tions of problems with 0.7 = Cap < 4 incorporate 40 interface
points, and 66 points for Cay = 4.0. As we will show, the
meniscus shape becomes insensitive to the capillary number
for Cay > 6, and thus a greater number of interfacial points is
unnecessary for simulations of flows with Ca, > 6.

3.2. Time-Dependent Behavior

Figure 5 shows the time-dependent behavior of the meniscus
interface when Ca, is increased from 0.1 to 1.0 (for instance,
by incrementing the flow rate). Initially the maximum normal
velocity 1s quite small and the shape of the interface changes
by a small amount. The curved tip approaches its steady shape
quite rapidly (t = 2) but it takes another three time units for
a thin-film region to stabilize. Capillary waves, which dampen
out with time, can be observed to propagate upstream of the
tip to the thin film.

Figure 6 details the change in bubble geometry as a function
of time resulting from a step increment of Cay from 0.1 to 1.0.
As indicated by Fig. 5, the bubble tip changes shape more
rapidly than the film region. The upstream film thickness
changes shape as a capillary wave sweeps through the film.
Figure 6 also presents the time-dependent behavior of the maxi-
mutm interfacial normal velocity (max(u - n}). These data indi-
cate that steady state occurs when max{u-n) << 0.001. This
value will be assumed for our steady-state predictions below.

0.6 T ;

Tip Radius of Curvature

Max. Meniscus Normal Velacity

Time

FIG. 6. Plots of (a) AP, (b} R, {c) finger width, and (d} max({u-n) versus time due to an instantancous change in Ca, from Cap = 0.1 to 1. The values

att = 0 comespond to the steady-state values for Cay = 0.1
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3.3, Steady-State Behavior

In order to compare the results from our simulations with
results from computational and experimental studies by other
investigators, we present the steady-state results in terms of the
steady-state capillary number, Ca, = Cay/B = pU*/y. Figure
7a shows that the thickness of the uniform film left behind the
tip, 1-8, increases with increasing Cay, and tends to a constant
as Cay — . For small Cay, Bretherton [4] showed that

B—1—1337Ca
AP -1 +38Cal

as Cay— 0,

(3.1)

as Cau_) 0.

Bretherton's [4] asymptotic predictions, adapted for the 2D
Hele—Shaw problem (Park and Homsy [16]), are shown in Fig.
7a,b. Also, the results of Reinelt and Saffman’s finite-difference
calculations [21] are shown as solid lines in these figures.
Reinelt and Saffman [21] have shown that their calculations
agree with those of Bretherton [4] for Cay, < 0.02, establishing
a limit for the validity of the asymptotic approach. Ratulowski
[20] extended the results of Bretherton [4] by using a more
accurate form of lubrication theory throughout the gap region.
His values of 8 agree quite well with those of Reinelt and
Saffman [21] for Ca,, of almost 0.5, but the pressure drop across
the finger tip is underestimated even at Cay == 0.1. As can be
seen from Figs. 7a,b,c, our steady-state results agree with the
finite-difference computations of Reinelt and Saffman {21] to
the limit of their calculations (Cay = 3). Figures 6 and 7a—c
show that the finger shape becomes more slender and the up
curvature increases with increasing Cay. Using the boundary
element method, we extended calculations of this system to
values of Ca, = 10%, well beyond those of previous studies.
The results of this investigation show that the finger radius of
curvature has a minimum value of R = 0.25 at approximately
Cay = 20; then it increases slightly and approaches a constant
radius of curvature of R = 0.278 at values of Cuay > 100,
Likewise, the finger width, 8, approaches a constant value of
0.580 for values of Cay > 100. The dimensionless pressure
jump, AP#{{vy/a)) becomes directly proportional to Cay for
valves of Cay > 100: AP*/(y/a)) = Cay. Thus, the dimensional
pressure jump, A P*, becomes proportional to wl//«, a quantity
that represents the viscous shear stress. This result is reasonable,
since for values of Cay > 100 the meniscus shape ts essentially
fixed, and thus the increased pressure drop must be due purely
to viscous forces in the neighborhood of the meniscus. Experi-
mental replication of the large Ca,, predictions will require Re
to be quite small (Re <€ Ca,™"). This may be possible using
fluids that are highly viscous, or in Hele—Shaw cells whose
transverse dimension {(a) is very small.

Tabeling e al. [25] measured the residual film that remained
after finger penetration in Hele—Shaw cells of various aspect
ratios for values of Cay = 0.2. A regression of the residual
film, d, vs, Cay for each value of the aspect ratio, w/a, of
the form
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d=d.(l — ") (3.2)
was found to provide a reasonable fit to the experimental data
over the range of 0 <¢ Cay, << 0.2. Equation (3.2) was chosen
since it reduces to the relationship determined by Bretherton’s
analysis for values of Cay <€ 1. This regression formula was
generalized by Tabeling for all values of w/a with the regres-
sion form

max

= 01 19(1 — e—().(]l9(w."n))(] _ e—S.SSL‘uﬂI)S

(3.3)

or

B=1—0238(1 — ¢ "0wany(| — e—s,.sacaff")_ (3.4)
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FIG.7. Predictions of steady state (a) finger width, (b) AP, and (c) meniscus
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In Fig. 8, we plot Eq. (3.4) for values of w/g that correspond to
several of the aspect ratios investigated by Tabeling et al. [25].
In addition, we plot (3.4) in the limit of (w/a) — . Finally, we
plot the predictions of 8 from our numerical computations for
the two-dimensional (w/a = o) Hele—Shaw cell. This figure
shows that for Cay, << 0.15, Eq. (3.4) fits our predictions well.
However, beyvond Cay; = 0.15, these regressions plateau, while
our predictions show 2 continuing to decrease, and thus a large
discrepancy between (3.4) and our predictions of 8 arises for
Cay > 0.15. Nevertheless, the general form of (3.4) provides a
relationship that resembles the results of our numerical simula-
tions. We thus generalized this form with an arbitrary power of
Cuy and regressed it to our computational predictions over the
range of 0.05 = Ca,, = 100 using a Marquardt-Levenberg algo-
rithm. The resulting regression formula is

0.5025

B=1-0417(] — ¥ 7} (3.5)

This regression, shown in Fig. 8, has an error norm of 0.026
and clearly provides a good fit to the computational predictions.
This regression shows that the finger width and, hence, the film
thickness, varies almost exactly with Cay’ for small values of
Cay. However, as the capillary number increases, the Cay, de-
pendence dampens exponentially. This regression result may
be considered to be an extension of the low-capillary asymptotic
predictions of Bretherton [4], who found a Cay dependence
for small values of Cay (Cay << 0.02). Our regression analysis
result is very similar to the film thickness relationship proposed
by Fairbrother and Stubbs [7] and Taylor [27], based upon their
experiments of two-phase flow in cylindrical tubes.

HALPERN AND GAVER

4. CONCLUSIONS

In this paper we have presented a method for investigating
time-dependent two-phase flow in a channel and have detailed
a number of important implementation considerations that must
be considered in order to produce accurate resuits, In particular,
we find that it is necessary for corner-point boundary conditions
to be specified so as to provide for discontinuous stresses in
the region where the unit outward normal is discontinuous.
This implementation also has the added benefit of allowing
time-dependent boundary conditions.

The boundary element method was found to be capable of
simulating two-phase displacement in a channel for a range of
capillary numbers much larger than those of previous studies
(0.05 = Cay = 10%). The steady-state results of these simula-
tions are in excellent agreement with those of Reinelt and
Saffman [21], who used a multiple-grid finite-difference ap-
proach, for values of the capillary number in the range of their
study (Cay = 3.0). This agreement validates our numerical
method. We found the interesting result that, for values of
Ca, > 20, the steady-state meniscus shape is insensitive to
Cay. In this region, the pressure varies directly with a viscous
scale (ul//a) and not the capillary pressure scale (y/a). This
finding is identical to the pressure scaling assumed by Martinez
and Udell [14] in their analysis of bubbles flowing through
tubes. An additional new result is that the radius of curvature
attains its minimum at Ca,, =~ 20.

A regression analysis of the finger width (8) versus Cay
shows that 8 = | — 0.417(1 — Exp[— 1.69 Cai’"). In the
limit of Cay <€ 1, this regression result is in agreement with
the experimental results of Taylor [27], who studied two-phase
displacement in capillary tubes for values of Ca,, < 0.09. How-
ever, as the capillary number increases, we find that the Cay,
dependence dampens exponentially. While our low Cay simula-
tions agree with the asymptotic predictions of Bretherton [4]
(valid for Cay < 0.02), the Exp(—1.69Ca;;”) regression result
may be considered as an extension of the asymptotic result,
valid for O(1) values of Cay.

The constancy of 3 for large values of Cay, may be responsible
for diminishing the three-dimensional nature of two-phase dis-
placement in a Hele—Shaw cell, which may explain why a two-
dimensional analysis of the system (one that neglects the trans-
verse finger geometry) accurately predicts the lateral finger width
(A) for large values of Cay. Given the success of the boundary
element method for the time-dependent solution of this problem,
we hope to apply this technique to more complex problems with
more than one free surface, such as the steady and unsteady flows
of bubbles through channels with compliant walls.
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